Share

Publications

The publications of the POEMS members are listed in the laboratory's HAL collection: HAL collection of POEMS

The publications appearing in the HAL open archive since 2025 are listed below by year.

2007

  • Asymptotic analysis for the solution to the Helmholtz problem in the exterior of a finite thin straight wire
    • Claeys Xavier
    , 2007. In this document we are interested in the solution of the Helmholtz equation with Dirichlet boundary condition in the exterior of a thin elongated body. We suppose that the geometry is well described in ellipsoidal coordinates. We propose an asymptotic analysis of this problem, using matched expansions. This leads to the construction of an approximate field with more explicit expression. The approximate field is composed of the first terms of the asymptotic expansion of the exact solution. Our study also leads to a validation of an acoustic version of the Pocklington's equation.
  • Asymptotic expansion of highly conductive thin sheets
    • Schmidt Kersten
    • Tordeux Sébastien
    , 2007, 7 issue 1, pp.2040011-2040012. (10.1002/pamm.200700278)
    DOI : 10.1002/pamm.200700278
  • Augmented Galerkin Schemes for the Numerical Solution of Scattering by Small Obstacles.
    • Claeys Xavier
    • Collino Francis
    , 2007. Dans le contexte de la propagation des ondes electromagnétiques, nous nous intéressons au problème de diffraction par des fils minces parfaitement conducteurs. Si l'on suppose que leur épaisseur est bien plus petite que la longueur d'onde caractéritique de l'onde incidente, il n'est pas posible de prendre en compte des fils minces sans faire face à un problème de verrouillage numérique. Le modèle de Holland, largement utilisé dans les codes différences finis, fournit une solution pragmatique à ce problème, en modifiant le schéma numérique sur quelques noeuds du maillage avoisinant les fils. Jusqu'à présent ce modèle n'a pas re\c cu de justification théorique solide, et il implique un paramètre appelé l'inductance linéique, qu'il doit être choisi suivant des considértions heuristiques. Nous nous intéressons ici au problème modèle de la diffraction acourtique par un petit obstacle, avec condition de Dirichlet au bord, en deux dimensions dans un milieu homogène. Nous présentons et analysons un schéma numérique qui est compatible avec les méthodes éléments finis standards (sans raffinement de maillage) et ne souffre de verrouillage numérique. Ce schéma mélange des techniques d'analyse asymptotique avec une formulation de type domaine fictif. Suivant les résultats que nous démontrons sur ce schéma, nous aboutissons à une généralisation du modèle de Holland et à un calcul automatique de l'inductance linéique. Notre analyse amène, à notre connaissance, à la première justification théorique de ce type de modèle.
  • Time-harmonic acoustic propagation in the presence of a shear flow
    • Bonnet-Ben Dhia Anne-Sophie
    • Duclairoir Eve-Marie
    • Legendre Guillaume
    • Mercier Jean-François
    Journal of Computational and Applied Mathematics, Elsevier, 2007, 204 (2 SPEC. ISS.), pp.428-439. This work deals with the numerical simulation, by means of a finite element method, of the time-harmonic propagation of acoustic waves in a moving fluid, using the Galbrun equation instead of the classical linearized Euler equations. This work extends a previous study in the case of a uniform flow to the case of a shear flow. The additional difficulty comes from the interaction between the propagation of acoustic waves and the convection of vortices by the fluid. We have developed a numerical method based on the regularization of the equation which takes these two phenomena into account. Since it leads to a partially full matrix, we use an iterative algorithm to solve the linear system. © 2006 Elsevier B.V. All rights reserved. (10.1016/j.cam.2006.02.048)
    DOI : 10.1016/j.cam.2006.02.048
  • Construction et analyse mathématique d'un modèle approché pour la propagation d'ondes acoustiques dans un tuyau mince parcouru par un fluide en écoulement.
    • Bonnet-Ben Dhia Anne-Sophie
    • Duruflé Marc
    • Joly Patrick
    , 2007. Dans ce travail, nous établissons formellement un modèle aymptotique basse fréquence pour la propagation du son dans un tube mince parcouru par un fluide en écoulement stationnaire. On aboutit à une équation différentielle (de type hyperbolique) par rapport à la variable longitudinale et non local en la variable transverse. Nous menons une analyse mathématique complète du problème d'évolution correspondant. Nous étudions en particulier l'influence du profil de la vitesse de l'écoulement sur le caractère bien posé de ce problème. Cette analyse est fondée sur l'analyse spectrale d'un opérateur borné non normal en dimension infinie. Un des débouchés potentiels de ce travail est l'obtention de résultats nouveaux sur les instabilités hydrodynamiques dans le cas des fluides compressibles.
  • Augmented Galerkin Schemes for the Numerical Solution of Scattering by Small Obstacles
    • Claeys Xavier
    • Collino Francis
    Numerische Mathematik, Springer Verlag, 2007, 116 (2), pp.243-268. We are interested in the problem of a bidimensional acoustic wave propagation in a medium including a small obstacle with homogeneous Dirichlet boundary condition. We present and analyse a numerical scheme suitable for finite elements that does not suffer from numerical locking, and takes the presence of the small obstacle into account. It is based on the fictitious domain method combined with matched asymptotic expansions. (10.1007/s00211-010-0301-z)
    DOI : 10.1007/s00211-010-0301-z
  • Nonreflecting Boundary Condition for Time-Dependent Multiple Scattering
    • Grote Marcus J.
    • Kirsch Christoph
    Journal of Computational Physics, Elsevier, 2007, 221 (1), pp.41-62. An exact nonreflecting boundary condition (NBC) is derived for the numerical solution of time-dependent multiple scattering problems in three space dimensions, where the scatterer consists of several disjoint components. Because each sub-scatterer can be enclosed by a separate artificial boundary, the computational effort is greatly reduced and becomes independent of the relative distances between the different sub-domains. In fact, the computational work due to the NBC only requires a fraction of the computational work inside @W, due to any standard finite difference or finite element method, independently of the mesh size or the desired overall accuracy. Therefore, the overall numerical scheme retains the rate of convergence of the interior scheme without increasing the complexity of the total computational work. Moreover, the extra storage required depends only on the geometry and not on the final time. Numerical examples show that the NBC for multiple scattering is as accurate as the NBC for a single convex artificial boundary [M.J. Grote, J.B. Keller, Nonreflecting boundary conditions for time-dependent scattering, J. Comput. Phys. 127(1) (1996), 52-65], while being more efficient due to the reduced size of the computational domain. (10.1016/j.jcp.2006.06.007)
    DOI : 10.1016/j.jcp.2006.06.007
  • Acoustic propagation in a flow: numerical simulation of the time-harmonic regime.
    • Bonnet-Ben Dhia Anne-Sophie
    • Duclairoir Eve-Marie
    • Mercier Jean-François
    ESAIM: Proceedings, EDP Sciences, 2007, 22, pp.1-14. We consider the time-harmonic acoustic radiation of a source in a moving fluid. The problem is set in a two-dimensional infinite duct and the mean flow is a subsonic parallel shear flow, with a regular profile. We deal with an equation (due to Galbrun) whose unknown is the displacement perturbation. We show how to solve the problem with a finite element method by writing a "regularized" or "augmented" formulation and using Perfectly Matched Layers to select the outgoing solution. Due to the presence of a non-local term coming from the regularization, an iterative process of resolution is preferred, which converges faster for weaker shear. Some mathematical results are established in the dissipative case. Numerical illustrations are finally presented. (10.1051/proc:072201)
    DOI : 10.1051/proc:072201